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Nevertheless, the standard CEV solution, using the non-central chi-square approach,
still presents high computational times. In this paper, the CEV option pricing formula
is computed using the semiclassical approximation of Feynman’s path integral. Our
simulations show that the method is quite efficient and accurate compared to the
standard CEV solution considering the pricing of European call options.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

One of the most significant limitations of the Black–Scholes (BS) [1] model is the assumption of constant volatility,
hich ignores some well-known empirical regularities such as the leverage effect [2,3], and the volatility smile [4,5].
hese shortcomings have inspired several non-constant volatility models in continuous time,1 such as the ‘stochastic
olatility’ models2 and the ‘level-dependent volatility’ models3 [10]. In the former, both the asset and the volatility have
heir own diffusion processes. In the level-dependent volatility models, only the asset is governed by a diffusion process,
nd its volatility is modeled as a function of the asset level. In this paper, the analysis will be focused on the constant
lasticity of variance (CEV) model, proposed by J. Cox [11,12], without doubt, the most known level-dependent volatility
pproach, see [13,14] for recent applications.
As its name suggests, the Constant Elasticity of Variance option pricing model assumes that the elasticity of the variance

f returns to the stock price is constant, opposed to the classical Black and Scholes model, that uses a geometric Brownian
otion dynamics, where the elasticity is zero since the variance is assumed constant. Thus, the CEV model allows volatility

o change with the underlying price, capturing a basic empirical regularity relevant for option pricing, such as the volatility
mile [15–18]. As a consequence, the CEV model outperforms the Black–Scholes model in forecasting option prices
19–23]. Furthermore, the empirical performance of the CEV model is comparable to most stochastic volatility models,
ut it is considerably easier to implement and calibrate [24]. Nevertheless, the exact formula for the CEV option pricing
odel of a vanilla European option still involves a very complex computation of an infinite series of incomplete gamma

∗ Corresponding author.
E-mail address: marcelo.villena@uai.cl (M.J. Villena).

1 For discrete-time approaches to modeling volatility, see Refs. [6,7].
2 A comprehensive review for stochastic volatility models can be found in [8] and [9] .
3 A.k.a. ‘local volatility’.
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functions [11,12]. Subsequently, Schroeder matched the Cox pricing formula with the non-central chi-square distribution,
and also provides a simple approximated method for its computation [16], see Ref. [25] for a detailed derivation of
the two methodologies. Since then, the use of the non-central chi-square distribution becomes the most widely used
method of pricing for options under the CEV model. Besides, several alternative methods for its implementation have
been developed [26–28].

Despite the advances detailed above, the standard CEV model solutions, using the non-central chi-square approach,
till presents considerably high computational times, especially when: (i) the maturity is small, (ii) the volatility is low, or
iii) the elasticity of the variance tends to zero [16,29,30]. In order to deal with these problems, many alternative
pproaches have been reported for the European-vanilla type option pricing. These approaches include numerical
chemes [29,31–33], Montecarlo simulations [34], perturbation theory model [35], and analytical approximations to the
ransition density [36] or to the hedging strategy [37], among others.

In this paper, the CEV option pricing formula is computed using the semiclassical approximation of Feynman’s path
ntegral. In financial literature, path integral techniques have already been used in the option pricing problem, see
38–45]. The main contribution of our paper is the use of Feynman’s path integral approximation technique to a non-
onstant volatility model. Specifically, for the CEV model, both classical action and van Vleck determinant are derived,
nd several simulations are carried out in order to show the empirical potential and limitations of this technique. Our
imulations show that computing the CEV option pricing formula using the semiclassical approximation of path integral
s quite efficient and accurate compared to the standard CEV solution considering the pricing of European call options.
ndeed, the proposed approximation reduces execution times importantly compared to the traditional solution.

In this context, we expect this research could be of importance not only because develops a novel and efficient formula
or the solution of the renowned CEV model, but also because it could foster the use of the path integral’s approach and
ts semiclassical approximation as an interesting computational tool to deal efficiently with other complex problems in
uantitative finance.
The structure of the paper is the following. Firstly, Feynman’s path integral formulation is revisited. Secondly, the path

ntegral approximation is applied to the basic BS model. Thirdly, the path integral approximation is applied to the CEV
odel. Later, a numerical solution to the CEV model is developed. In the next section, several numerical simulations are
arried out in order to measure the performance of the new method, comparing the path integral approximation with
he traditional non-central chi-squared approach for the pricing of European call options. Finally, some conclusions and
uture research avenues are outlined.

. The Feynman path integral approach

The path integral formalism was developed by Richard P. Feynman [46], introducing the action principle from classical
echanics to quantum mechanics. Nowadays Feynman’s path integral is a well-known tool in quantum mechanics, and
tatistical and mathematical physics, with applications in many branches of physics such as optics, thermodynamics,
uclear physics, atomic and molecular physics, cosmology, polymer science and other interdisciplinary areas [47–49]
In the following lines, we describe the fundamentals of the path integral methodology. The starting point is the

ime-dependent Schrödinger equation:

ih̄
∂Ψ (x, t)

∂ t̃
= ĤΨ (x, t) (1)

where Ψ is the wave function and Ĥ the Hamiltonian quantum operator (for this instance we consider a time independent
Hamiltonian).

Considering Ψ0(x) as the initial value of Ψ (i.e., Ψ (x, t = 0) = Ψ0(x)), the general solution of Eq. (16) is given by:

Ψ (x, t) = e−iĤt/h̄Ψ0(x) (2)

Equivalently, using convolution properties, the value at time t of the wave function is represented by:

Ψ (x, t) =

∫
∞

−∞

e−iĤt/h̄δ (x − x0) Ψ0 (x0) dx0

=

∫
∞

−∞

K (x, t | x0, 0) Ψ0 (x0) dx0 (3)

where K (x, t|x0, 0) =< x0|e−itĤ/h̄
|x > is called the propagator.

Feynman concentrated on a previous work of Dirac [50], related with the proportionality between the exponential of
the action over the classical path (which come from the Lagrangian formalism) and the propagator in quantum mechanics:

K (x, t | x0, 0) ∝ e(i/h̄)A[xcl]

where A is the action functional, defined as the time integral Lagrangian:

A[x(t)] =

∫ t

0
L(x, ẋ, t ′)dt ′

and A [x ] indicates that the action is evaluated over the classical trajectory from x to x.
cl 0

2
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Feynman reformulated Dirac formulation and described the propagator as the contributions of the all virtual paths,
ot only the classical ones:

K (x, t | x0, 0) =

∑
All Paths

from x0 to x

Ñe(i/h̄)A[x(t)]

where Ñ is an appropriated normalization for K .
Thus, using the Riemann integral for each path (see Ref. [47]), the propagator is defined as:

K (x, t | x0, 0) =

∫
D[x(t)]e(i/h̄)A[x(t)] (4)

The functional integral of the right-hand side of Eq. (4) is defined as a ‘Path Integral’, and the measure of the integration
is given by D [x(t)] which means the integrations over all the trajectories.

The standard computation of the path integral is done via the time-slicing scheme [46,47], which is not a straight-
orward procedure. Nevertheless, there is an alternative and popular method used in physics called the ‘semiclassical
pproximation’, which approximates the argument of the path integral into a Gaussian function, arriving this way to a
olution in terms of the classical path, see [51–53]. The general procedure is explained below.
First, we write the path that links the points x(t0) = x0 with x(t1) = x1 as the classical trajectories as the main

ontribution plus the fluctuations around it:

x(t) = x(t)cl + δx(t) (5)

with the fixed conditions (extremality condition):

δx(t0) = δx(t1) = 0 (6)

Later, we can expand the action around to xcl(t) using a functional Taylor series [54]:

A [x(t)cl + δx] = A [x(t)]
⏐⏐⏐⏐
xcl(t)

+

∫ t1

t0

dt
δA [x(t)]

δx(t)

⏐⏐⏐⏐
xcl(t)

δx(t)

+
1
2

∫ t1

t0

dtdt ′
δ2A

δx(t)δx(t ′)
δx(t)δx(t ′)

⏐⏐⏐⏐
xcl(t)

+
1
3!

∫ t1

t0

dtdt ′dt ′′
δ3A

δx(t)δx(t ′)δx(t ′′)
δx(t)δx(t ′)δx(t ′′)

⏐⏐⏐⏐
xcl(t)

+ O(4) (7)

The semiclassical approximation consists in truncated up to the quadratic terms the expansion (7):

A [x(t)] ≈ A [xcl(t)] +
1
2

∫ t1

t0

δ2A
δx(t)δx(t ′)

δx(t)δx(t ′)
⏐⏐⏐⏐
xcl(t)

where the linear term is vanished due to the extremality condition.
Thus, the propagator in the semiclassical limit becomes:

K SC (x1, t1|x0, t0) = e(i/h̄)A[xcl(t)]
∫

D [δx] e
(i/h̄) 12

∫ t1
t0

δ2A
δx(t)δx(t′)

δx(t)δx(t ′)

⏐⏐⏐⏐⏐⏐
xcl(t)

= e(i/h̄)A[xcl(t)]N (8)

here N is a normalization which incorporates the contribution of the second order term, defined by a Gaussian path
ntegral . An analytical expression was developed for it in Ref. [55] as the necessary condition to maintain the unitary
easure of the probability amplitudes [56], and it is equal to:

N =

√
−

M
2π

(9)

where M is the van Vleck–Pauli–Morette determinant4 [55,58], computed as:

M =
∂2A [xcl]
∂x0∂x1

(10)

4 A.k.a Morette–Van Hove determinant. See Ref. [57] for details.
3
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Finally, in the semiclassical regime, the propagator becomes5:

K (x, t | x0, 0) =

√
−

M
2π

e
i
h̄ A[xcl] (11)

The only necessary condition to get a solution for Eq. (11) is to have an analytical expression for the action over
the classical path. This can be achieved via the Hamilton equations (or Euler–Lagrange equation) using the classical
Hamiltonian related to the quantum Hamiltonian defined in Eq. (1).

Finally, two important notes must be considered in relation to the semiclassical approximation [48]:

(i) It is exact if the Lagrangian is quadratic.
(ii) It satisfy the Schrödinger equation up to terms of order h̄2.

In the next section, we apply the semiclassical approximation of path integral to the European-vanilla type option pricing,
arriving to the famous Black–Scholes model.

3. A semiclassical approximation of the path integral approach to the Black–Scholes model

We assume stochastic spot prices St , governing by a standard geometric Brownian motion under risk-neutral
Q-measure:

dSt
St

= rdt + σdWt (12)

here Wt is a standard Gauss–Wiener process with variance t . The parameters r and σ are the risk-free rate of interest
nd the volatility of the return, respectively. At this stage, we set these parameters as constants.
By Itô’s calculus, is possible to rewrite Eq. (12) into:

d (ln St) =

(
r −

σ 2

2

)
dt + σdWt (13)

nd labeling xt = ln St :

dxt =

(
r −

σ 2

2

)
dt + σdWt (14)

The probability density P(xt , t, x′, t ′) for the random variable xt evolves according to the Fokker–Planck (or forward
Kolmogorov) equation [59]:

∂P
∂t

= −
∂

∂x

[(
r −

σ 2

2

)
P
]

+
1
2

∂2

∂x2
(
σ 2P

)
=

1
2
σ 2 ∂2P

∂x2
−

(
r −

σ 2

2

)
∂P
∂x

(15)

ith initial condition:

P (xt , t = 0) = δ(x)

Using the wick rotation (t̃ = it), the evolution of the probability density P (Eq. (15)) can be mapped to the Schödringer
quation:

ih̄
∂Ψ

∂ t̃
= ĤBSΨ (16)

here the wave function Ψ represents the probability P , and the quantum Hamiltonian ĤBS , namely for this instance the
lack–Scholes Hamiltonian, is given by [60]:

ĤBS =
1
2
σ 2 ∂2

∂x2
−

(
r −

σ 2

2

)
∂

∂x

In order to ensure the compatibility between Eqs. (15) and (16), we need to set h̄ = 1.
Given the momentum operator p̂ = −ih̄ ∂

∂x = −i ∂
∂x , the Hamiltonian can be expressed as :

ĤBS = −
1
2
σ 2p̂2

− i
(
r −

σ 2

2

)
p̂

5 Eq. (11) is called the Pauli formula [48].
4
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Considering Ψ0(x) as the initial value of Ψ (i.e., Ψ (x, t = 0) = Ψ0(x)), the general solution of Eq. (16) is given by
see [41]):

Ψ (x, t) = e−iĤBS t̃Ψ0(x)

= eĤBS tΨ0(x)

Equivalently, using the convolution properties, the value at time t0 of the wave function is represented by:

Ψ (x, t0) =

∫
∞

−∞

KBS (xT , T |x0, t0) ΨT (xT ) dxT

here KBS (xT , T |x0, t0) is the propagator, which admits the following path integral representation in euclidean time [47]:

KBS (xT , T |x0, t0) =

∫
Dx(t)e−SBS [x(t)]

being SBS [x(t)] the euclidean classical action which links the points and x(t0) = x0 and x (T ) = xT ; defined by:

SBS [x(t)] =

∫ T

t0

LBSdt

where LBS is the Black–Scholes Lagrangian.
In order to obtain an expression for the propagator (Eqs. (8)–(11)) we request the classical action evaluated over the

classical path. This can be obtained using classical Hamiltonian mechanics.
The classical Hamiltonian HBS associated to the operator ĤBS is:

HBS = −
1
2
σ 2p2 − i

(
r −

σ 2

2

)
p

ith its related classical Hamilton’s equations in euclidean time:

−iẋ =
∂HBS

∂p

−iṗ = −
∂HBS

∂x
r explicitly:

p =
i

σ 2

[
ẋ −

(
r −

σ 2

2

)]
(17)

ṗ = 0 (18)

Then, the Lagrangian is given via the Legendre transformation:

LBS = −ipẋ − HBS

= −ipẋ +
1
2
σ 2p2 + i

(
r −

σ 2

2

)
p

=
p
2

[
σ 2p − 2i

(
ẋ − r +

σ 2

2

)]
Using the values that solves the Hamilton’s equation (Eqs. (17)–(18)), the Lagrangian is:

LBS =
1

2σ 2

[
ẋ −

(
r −

σ 2

2

)]2

(19)

Later, the Euler–Lagrange equation:

d
dt

(
∂LBS

∂ ẋ

)
−

∂LBS

∂x
= 0 (20)

ields to the free particle Newton equation:

ẍ = 0 (21)

hich leads to the classical path:

ẋ = C (22)
x = Ct + D (23)

The values for C and D are obtained using the boundary conditions (fixed values) for x, x(t ) = x and x T = x .
0 0 ( ) T

5
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Thus, the classical path, with t0 ≤ t ≤ T , is described by:

ẋ(t) =
xT − x0
T − t0

(24)

x(t) =
xT − x0
T − t0

(t − t0) + x0 (25)

Then, using Eqs. (24) and (25), the corresponding classical action over the classical path:

A [xclass (t)] =

∫ T

t

1
2σ 2

[
ẋ
(
t ′
)
−

(
r −

σ 2

2

)]2

d
(
t ′
)

=
1

2σ 2(T − t0)

[
(xT − x0) − (T − t0)

(
r −

σ 2

2

)]2

(26)

Now, we are in conditions to compute the propagator. According to Eqs. (9)–(10):

N =
1√

2πσ 2 (T − t0)

and the semiclassical approximation for the propagator becomes:

K SC
BS (xT , T |x0, t0) =

e−SBS [xclass(t)]√
2πσ 2 (T − t0)

=
1√

2πσ 2 (T − t0)
e
−

1
2σ2(T−t0)

[
(xT−x0)−(T−t0)

(
r− σ2

2

)]2

Then, the wave function solution is reduced to:

Ψ (x, t0) =
1√

2πσ 2 (T − t0)

∫
∞

−∞

e−SBS [xclass(t)]ΨT (xT ) dxT (27)

=
1√

2πσ 2 (T − t0)

∫
∞

−∞

e
−

1
2σ2(T−t0)

[
(xT−x0)−(T−t0)

(
r− σ2

2

)]2
ΨT (xT ) dxT (28)

which is equal to the convolution between the propagator and the contract function:

Ψ (x, t0) = K BS
SC ∗ ΨT (xT )

The solution of Eq. (27) depends on the boundary condition ΨT (contract function). We analyze the case of a European
call option, i.e.,:

ΨT (xT ) = e−rτ max {ST − E, 0}
= e−rτ max

{
exT − E, 0

}
being E the strike price.

Then, the wave function for this case is:

Ψ (x, t) =
e−r(T−t0)√

2πσ 2 (T − t0)

∫
∞

ln E
e
−

1
2σ2(T−t0)

[
(xT−x0)−(T−t0)

(
r− σ2

2

)]2 (
exT − E

)
dxT

=
e−r(T−t0)√

2πσ 2 (T − t0)

∫
∞

ln E
exT e

−
1

2σ2(T−t0)

[
(xT−x0)−(T−t0)

(
r− σ2

2

)]2
dxT

−
Ee−r(T−t0)√

2πσ 2 (T − t0)

∫
∞

ln E
e
−

1
2σ2(T−t0)

[
(xT−x0)−(T−t0)

(
r− σ2

2

)]2
dxT

= I1 − I2

Developing I1, we have:

I1 =
e−r(T−t0)√

2πσ 2 (T − t0)

∫
∞

ln E
e
−

1
2σ2(T−t0)

[
x2T−2xT

(
x0+(T−t0)

(
r− σ2

2

))
+

(
x0+(T−t0)

(
r− σ2

2

))2
]
+xT

dxT

=
ex0√
2

∫
∞

e
−

1
2σ2(T−t0)

[
xT−

(
x0+(T−t0)

(
r+ σ2

2

))]2
dxT
2πσ (T − t0) ln E

6
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Carrying out the change of variable u =

[
−xT + x0 + (T − t0)

(
r +

σ2

2

)]
/
√

σ 2 (T − t0), and replacing x0 = ln S0, we
have:

I1 = − S0

[∫
−∞

x0−ln E+(T−t0)

(
r+ σ2

2

) e−
1
2 v2du

]
= S0N (d1)

where N (·) is the standard normal cumulative function and d1 =

ln
(
S0
E

)
+(T−t0)

(
r+ σ2

2

)
√

σ2(T−t0)
.

To solve I2 we use the change of variable v = −

[
(xT − x0) − (T − t0)

(
r −

σ2

2

)]
/
√

σ 2 (T − t0), so:

I2 = −
Ee−r(T−t)

√
2π

∫
−∞

x0−ln E+(T−t0)

(
r− σ2

2

) e−
1
2 v2du

= Ee−r(T−t)N (d2)

being d2 =

ln
(
S0
E

)
+(T−t0)

(
r− σ2

2

)
√

σ2(T−t0)
= d1 −

√
σ 2(T − t0).

Finally, the price of a call option at time t0, using the path integral formulation, is given by:

Ψ (S0, t0) = S0N (d1) − Ee−r(T−t0)N (d2)

which is exactly the same value obtained by Black–Scholes [1] for a European call option. 6

4. A semiclassical approximation of the path integral approach to the CEV model

In the CEV model, under the risk-neutral measure, the asset is governed by the following stochastic differential
equation [11,12]:

dS (S, t) = rSdt + σS
α
2 dW (29)

eing r the constant risk-free of interest, σ and α constant values, and W a standard Wiener process, with dW ∼ N (0, dt).
In its paper, Cox imposed the domain for α in the range [0, 2[. In this interval, the asset’s volatility is negatively
correlated with the asset’s returns. (leverage effect). For values greater than two, the process described in Eq. (29) is
not a martingale [61,62] (i.e, there are not a unique risk-neutral measure). For α < 0, the volatility unrealistically goes to
zero as S increases [63]. Then, the same Cox’s condition for α is assumed in this paper.

The process described by Eq. (29) can be interpreted as a generalization of the standard geometric Brownian motion
used in the Black–Scholes model [1], but considering a non-constant local volatility function equals to σS

α−2
2 . In fact, for

he limit case α = 2, Eq. (29) is degenerated to the BS case [64]. Also, the CEV model has correspondence with other
pproaches: For α = 1, it becomes a square root process, addressed by Cox and Ross [65]; and for α = 0, S follows an

Ornstein–Uhlenbeck type process [66].
The CEV model described in Eq. (29) owes its name to the fact that the variance of the return is given by:

v = var
(
dS
S

)
= var

(
rdt + σS

α−2
2 dW

)
= σ 2Sα−2dt

and then, the elasticity of the variance with respect to the spot:
dv/v

dS/S
= α − 2

is constant.
The strategy to get an option pricing formula will be the same that it was developed in Section 3. That is: (i) we arrive

at the Fokker–Planck equation; (ii) we rewrite it as a Schrödinger equation; (iii) later, we find the classical path through
the Hamilton or Euler–Lagrange equations, working with the propagator as a path integral, (iv) we evaluate the classical
path using semiclassical arguments; and (v) finally, we compute the convolution between the propagator and the contract
function in the integral form.

6 As noted previously (On page 2), the semiclassical approximation is exact if the Lagrangian is quadratic, as in the case of the B-S Lagrangian
(Eq. (19)).
7
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Firstly, we use the following transformation:

y(S, t) = S2−α

and by the Itô’s Lemma, Eq. (29) can be rewritten as:

dy = (2 − α)

[
ry +

1
2

(1 − α) σ 2
]
dt + (2 − α) σ

√
ydW

The Fokker–Planck equation rules the transition probability P(y, t) of the variable y. Thus:

∂P
∂t

=
1
2

∂2

∂y2
[
(2 − α)2 σ 2yP

]
−

∂

∂y

[
(2 − α)

(
ry +

1
2

(1 − α) σ 2
)
P
]

=
1
2
β2σ 2y

∂2P
∂y2

+ βr [γ − y]
∂P
∂y

− βrP (30)

eing β and γ constant values (parameters), defined as:

β = 2 − α γ =
3 − α

2r
σ 2

The relationship (30) can be interpreted as the Schrödinger equation in Euclidean (Wick-rotated) time, with h̄ = 1:
∂Ψ

∂t
= ĤΨ

where the wave function Ψ is equivalent to the probability P and the Hamiltonian operator Ĥ is given by:

Ĥ =
1
2
β2σ 2y

∂2

∂y2
+ βr [γ − y]

∂

∂y
− βr

Using the quantum momentum operator, p̂ = −i ∂
∂y , the Hamiltonian goes to:

Ĥ = −
1
2
β2σ 2yp̂2 + iβr [γ − y] p̂ − βr

Later, we consider a final term condition (contract function) of the form:

Ψ (y, t = T ) = Ψ (yT )

The wave function Ψ , can be written in terms of its propagator K :

Ψ (y, t0) =

∫
∞

−∞

K (yT , 0|y0, 0) Ψ (yT )dyT

where the propagator can be estimated using the path integral:

K (yT , T |y0, 0) =

∫
D [y(t)] e−S[y(t)]

being D [y(τ )] the infinitesimal contribution of all the paths that satisfies the boundary conditions y(t = T ) = yT and
y(t = 0) = y0; being S the euclidean classical action.

Using semiclassical arguments the propagator becomes:

K (yT , T |y0, 0) = e−A[ycl(t)]

√
−

1
2π

M

The classical path is obtained as the solution of the Hamilton equations. The classical Hamiltonian H related to Ĥ is:

H = −
1
2
β2σ 2yp2 + iβr [γ − y] p − βr

where p represents the classical momentum. Considering the Hamilton equation in Euclidean time, the momentum can
be written in terms of y and ẏ:

p = i
ẏ + βr [γ − y]

β2σ 2y
(31)

So, using Eq. (31), the Lagrangian takes the form:

L = −iẏp − H (32)

=
{ẏ + βr [γ − y]}2

2 + Ar

2β σ 2y

8
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a

w

The unique classical trajectory is which obeys the Euler–Lagrange equation:

d
dt

(
∂L
∂ ẏ

)
−

∂L
∂y

= 0 (33)

Computing the derivatives:

∂L
∂ ẏ

=
ẏ + βr (γ − y)

β2σ 2y
d
dt

(
∂L
∂ ẏ

)
=

ÿy − ẏ2 − βγ rẏ
β2σ 2y2

∂L
∂y

= −
[ẏ + βr (γ + y)] [ẏ + βr (γ − y)]

2β2σ 2y2

nd replacing into Eq. (33), we have a second order differential equation that rules the classical behavior of y(t):

2yÿ − ẏ2 + β2r2
(
γ 2

− y2
)

= 0 (34)

Then, solving Eq. (34), the classical path is given by:

ycl
(
t ′
)

=

(
C1 + 2C2e−rt ′β

)2
− γ 2

4C2e−rt ′β
(35)

being C1 and C2 constants given by the fixed values of the path at time t ′ = 0 and t ′ = T (i.e., y0 and yT , respectively):
hich yields to:

C1 =

(
erTβ

+ 1
)√

γ 2
(
erTβ − 1

)2
+ 4y0yT erTβ − 2erTβ (y0 + yT )(

erτβ − 1
)2 (36)

C2 =

[
yT erTβ

+ y0 −

√
γ 2

(
erTβ − 1

)2
+ 4y0yT erTβ

]
(
erTβ − 1

)2 (37)

Later, using Eq. (35), the Lagrangian over the classical path is:

Lcl = L [ycl]

=

r2
(
C1 + 2C2ert

′β
+ γ

)
(γ − C1)

2

2σ 2C2ert
′β

(
C1 + 2C2ert

′β − γ
) + βr (38)

Thus the classical action is obtained by time integration of Eq. (38) :

Acl =

t ′=T∫
t ′=t0

Lcldt ′

=
r
σ 2

{
βσ 2t ′ − 2γ rt ′ +

2γ
β

ln
[
γ −

(
C1 + 2C2ert

′β
)]

+

(
γ 2

− C2
1

)
2Aβert ′β

}⏐⏐⏐⏐⏐
t ′=T

t ′=0

= βrT −
2γ r2

σ 2 τ +
2γ r
βσ 2 ln

[
γ −

(
C1 + 2C2erTβ

)
γ − (C1 + 2C2)

]

+

(
γ 2

− C2
1

)
2βC2erTβ

(
1 − erTβ

)
(39)

So, using Eq. (39), the van Vleck determinant (Eq. (10)) is computed as :

M =
2γ r [γ − (C1 + 2C2)]

βσ 2
[
γ −

(
C1 + 2C2erτβ

)] {
−

∂2

∂y0∂yT

(
C1 + 2C2erTβ

)
γ − (C1 + 2C2)

−

[
∂

∂y0
(C1 + 2C2)

] [
∂

∂yT

(
C1 + 2C2erTβ

)]
+

[
∂

∂yT
(C1 + 2C2)

] [
∂

∂y0

(
C1 + 2C2erTβ

)]
2
[γ − (C1 + 2C2)]

9
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v

w
i

5

W
c

s

+

2
[
γ −

(
C1 + 2C2erTβ

)] [
∂

∂yT
(C1 + 2C2)

] [
∂

∂y0
(C1 + 2C2)

]
[γ − (C1 + 2C2)]3

+

[
γ −

(
C1 + 2C2erTβ

)] [
∂2

∂y0∂yT
(C1 + 2C2)

]
[γ − (C1 + 2C2)]2

}

−

{
2γ r [γ − (C1 + 2C2)]

[
−

∂
∂y0

(
C1 + 2C2erTβ

)]
βσ 2

[
γ −

(
C1 + 2C2erTβ

)]2
×

⎡⎣−
∂

∂yT

(
C1 + 2C2erTβ

)
γ − (C1 + 2C2)

+

[
γ −

(
C1 + 2C2erTβ

)] [
∂

∂yT
(C1 + 2C2)

]
[γ − (C1 + 2C2)]2

⎤⎦}

+

2γ r
[
−

∂
∂y0

(C1 + 2C2)

]
βσ 2

[
γ −

(
C1 + 2C2erTβ

)]{[
γ −

(
C1 + 2C2erTβ

)] [
∂

∂yT
(C1 + 2C2)

]
[γ − (C1 + 2C2)]2

−
∂

∂yT

(
C1 + 2C2erTβ

)
γ − (C1 + 2C2)

}
+

r
(
eβrT

− 1
) [(

∂C1
∂y0

)(
∂C1
∂yT

)
+

∂2C1
∂y0∂yT

]
βσ 2C2erTβ

−

r
(
eβrT

− 1
) [(

∂C1
∂yT

)(
∂C2
∂y0

)
+

(
∂C1
∂y0

)(
∂C2
∂yT

)
−

1
2

(
γ 2

− C2
1

) (
∂2C2

∂y0∂yT

)]
βσ 2C2

2 erTβ

−

r
(
eβrT

− 1
) (

γ 2
− C2

1

) (
∂C2
∂yT

)(
∂C2
∂y0

)
βσ 2C3

2 erTβ

Then is possible to compute the semiclassical propagator, through the Euclidean form of the Pauli’s formula (Eq. (11)):

K = e−A[ycl(t)]

√
−

1
2π

M

Finally, the value of the wave function at time t = 0, is given by:

Ψ (y0, 0) =

√
1
2π

∫
∞

−∞

√
−Me−AclΨ (yT )dyT

Coming back to the option pricing problem, if we consider a European call option, with strike E and maturity T , the
alue of the option at time t under the CEV model will be:

C (S0, 0) =

√
1
2π

∫
∞

E1/(2−α)

√
−Me−A[ycl(t)]

(
y

1
2−α

T − E
)
dyT (40)

hich unfortunately is not possible to evaluate analytically, but it can be easily computed numerically for any conventional
ntegration method.

. Numerical simulations

We compute numerically, using a standard method (global adaptive quadrature [67]), the integral defined in Eq. (40).
e also compute the pricing for the same European call option using the Schroder approach that considers the non-central

hi-square distribution and set it as the benchmark.
We examine the results of both models, in terms of the pricing and the running time of each computation; considering

everal volatilities and elasticities of variances. Besides we test our results for short-time maturities (T = {0.25, 0.5}) and
long time maturities (T = {2, 4}). In all the experiments we assume r = 0.05, S0 = 100 and E = 110,

Firstly, we consider a maturity equal to six months. In Table 1 both the pricing and computational time (obtained as
the average time for 1000 tries) are reported. We can see that the path integral method has similar pricing values but
with a clear advantage in the running time. The times observed in Table 1 for the proposed method of path integral are
always lower to 0.0011 s; however, for the non-central chi-square approach, the times are at least greater by 30 times.
For a high value in the elasticity parameter and low volatility, the difference in time achieves two orders of magnitude.

For a clearer and complete view, we present the continuous results in Figs. 1, 2, and 3. The pricing and the running
time are shown for both models sweeping on values of α. The figures confirm the observed concussions in Table 1 in the
sense that the running times of the proposed method of path integral are significantly lower (right-hand side figures) than
the traditional solution methodology for the CEV model, especially when α tends to 2 where the time of the benchmark
10



A.A. Araneda and M.J. Villena Journal of Computational and Applied Mathematics 388 (2021) 113244

m
o
v

c
t

F
i
a

Table 1
Comparison of pricing and computational time for a Call option for some values of σ and
α, using T = 0.5, S0 = 100 and E = 110.
σ α Path integral Benchmark

Pricing ($) Time (s) Pricing ($) Time (s)

20%
1 4.4289·10−8 0.0009 4.6567·10−8 0.1407
1.45 0.0580 0.0010 0.0600 0.0849
1.9 1.8505 0.0011 1.8706 0.1888

50%
1 0.0259 0.0008 0.0275 0.0466
1.45 1.3437 0.0009 1.4181 0.0298
1.9 8.0777 0.0011 8.2636 0.0598

90%
1 0.3847 0.0010 0.4148 0.0246
1.45 3.9003 0.0011 4.2358 0.0158
1.9 16.4965 0.0010 17.1870 0.0362

Fig. 1. Pricing and computational time for a Call option using σ =20%, T = 0.5, r = 0.05, S0 = 100 and E = 110.

Fig. 2. Pricing and computational time for a Call option using σ =50%, T = 0.5, r = 0.05, S0 = 100 and E = 110.

ethod rises considerably. In terms of accuracy, we can see that the path integral method fits very well in all cases. In
rder to have an estimation of the path integral approach, in Fig. 4 the absolute and relative errors are shown for several
alues of α and σ . Always, the relative error is no longer that 10% for the assumed parameters.
If we use a lower time to maturity (three months) the results in terms of computational time are very similar to the

ase T = 0.5 (although the time of the benchmark grows a little), and the fit is still good too. In fact, for lower maturity
he path integral method performs better because the error is no greater than 2%. This is showed from Figs. 5 to 8.

For greater times to maturity, we have a change in the results, indicating the limits of the semiclassical approximation.
or a two years maturity Figs. 9–12 we find results very similar to that of the previous cases, but with a more deviation
n the pricing (absolute error). Still, the relative error remains lower than 12%. In terms of running time, the semiclassical
pproach performs similarly than in previous cases. While for the option pricing, we confirm the fact that there is a
11
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Fig. 3. Pricing and computational time for a Call option using σ =90%, T = 0.5, r = 0.05, S0 = 100 and E = 110.

Fig. 4. Absolute and relative error of the path integral approach with T = 0.5, r = 0.05, S0 = 100 and E = 110.

Fig. 5. Pricing and computational time for a Call option using σ =20%, T = 0.25, r = 0.05, S0 = 100 and E = 110.

ecline in time for both greater maturities and volatilities. However, the rising running times continue for α near two,
nd a significative time difference keeps in favor of the proposed method. This fact is confirmed when we use maturity
quals to 4 years. In the same way, the pricing error goes up, despite the fact that the relative error remains under 20%
see Figs. 13–16).
12
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Fig. 6. Pricing and computational time for a Call option using σ =50%, T = 0.25, r = 0.05, S0 = 100 and E = 110.

Fig. 7. Pricing and computational time for a Call option using σ =90%, T = 0.25, r = 0.05, S0 = 100 and E = 110.

Fig. 8. Absolute and relative error of the path integral approach with T = 0.25, r = 0.05, S0 = 100 and E = 110.

.1. Comparison with other standard numerical methods

In order to compare the proposed semiclassical method with other standard numerical schemes, we have computed
he Call-CEV option prices and their running times for the Monte Carlo, Binomial tree, and finite differences methods.
n the tables below, we show the pricing and running times under the numerical approaches pointed out above for the
ame set of parameters given in Table 1. We report ∆MAPE (mean absolute percentage error) and ∆ Time estimations
or all models. ∆MAPE is defined as the difference between the MAPE of the method in question and the MAPE of the
emiclassical method. Every MAPE is estimated with respect to the benchmarking, (non-central chi-squared). The same
13
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Fig. 9. Pricing and computational time for a Call option using σ = 20%, T = 2, r = 0.05, S0 = 100 and E = 110.

Fig. 10. Pricing and computational time for a Call option using σ = 50%, T = 2, r = 0.05, S0 = 100 and E = 110.

Fig. 11. Pricing and computational time for a Call option using σ =90%, T = 2, r = 0.05, S0 = 100 and E = 110.

or the ∆ Time estimations. It is defined as the difference between the running time of the method in question and
he running time of the semiclassical method. In this context, a positive ∆MAPE means that the error is lower for the
emiclassical method. Similarly, a positive ∆ Time means that the running time is lower for the semiclassical method.
Table 2 displays the pricing and time for a Monte Carlo method (which simulate 104 and 105 values for ST , and a

tandard Euler–Maruyama discretization). While the running times of the Montecarlo with 1000 simulations are clearly
reater than the semiclassical times, the accuracy of Monte Carlo is poorer. These results do not change when we increase
he number of simulations by a factor of 10.
14
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Fig. 12. Absolute and relative error of the path integral approach with T = 2, r = 0.05, S0 = 100 and E = 110.

Fig. 13. Pricing and computational time for a Call option using σ = 20%, T = 4, r = 0.05, S0 = 100 and E = 110.

Fig. 14. Pricing and computational time for a Call option using σ = 50%, T = 4, r = 0.05, S0 = 100 and E = 110.

In order to value a European Call option by a binomial tree, we use the standard recombinant lattice scheme for the
EV model (see, for example, section 2.2 of Ref. [33]). Table 3 provides the pricing by a binomial tree using both 50 and
00 steps. The 50 steps binomial tree offers better results in terms of accuracy than the semiclassical method for higher
olatilities, but greater execution times. If we increase the steps to 100 in the binomial tree, there is an improvement in
he accuracy of the method compare to the semiclassical approximation, but the running time rises considerably.

Finally, in Table 4, the option pricing is obtained by an explicit finite difference method. We consider two lattices:
ne of 100 values for the asset and 2500 for the time, and another of 200 values for the asset and 9000 for the time.
he asset values are restricted to the interval [0,200]. The time grid was selected as the lower value to avoid instability
15
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Fig. 15. Pricing and computational time for a Call option using σ = 90%, T = 4, r = 0.05, S0 = 100 and E = 110.

Fig. 16. Absolute and relative error of the path integral approach with T = 4, r = 0.05, S0 = 100 and E = 110.

Table 2
Pricing and computational time, by Binomial Tree, for a Call option for some values of σ

and α, using T = 0.5, S0 = 100 and E = 110.
σ α Monte Carlo (104 iterations) Monte Carlo (105 iterations)

∆ MAPE (%) ∆ Time (s) ∆ MAPE (%) ∆ Time (s)

20%
1 95.1 0.0006 53.0 0.0185
1.45 21.8 0.0015 21.5 0.0227
1.9 10.5 0.0016 10.6 0.0254

50%
1 18.2 0.0010 17.8 0.0154
1.45 5.3 0.0017 5.3 0.0230
1.9 5.1 0.0015 5.1 0.0236

90%
1 5.2 0.0006 5.0 0.0170
1.45 −0.6 0.0017 −0.6 0.0245
1.9 1.5 0.0016 1.6 0.0234

in all the cases described in Table 4, for a given asset discretization. Although the results are similar to the semiclassical
method, the time-cost is higher for the 2500×100 finite difference scheme. Indeed, if we increase the resolution of the
grid (9000×200), the accuracy rises, but also the execution times.

In graphical terms, in Figs. 17–19; the numerical methods addressed above, are compared with the non-central chi-
squared approach (pricing) and the semiclassical approach (times); for a 3-month maturity, volatility equal to 20%, and
elasticity parameter in the interval [1, 2]. These plots are contrasted with Fig. 5. We could see that the Monte Carlo method
(Fig. 17) presents higher deviations from the benchmark, and their running times are greater than the semiclassical ones.
In contrast, the binomial tree and finite difference methods, with small grid resolution, are competitive to the semiclassical
approach in both accuracy and running times. In Fig. 18 we could see that the 50-step binomial tree offers similar times
and pricing values than the semiclassical method. For the finite difference method, we plot (Fig. 19) the results using the
lattices 2500 × 100 and 300 × 100. Even that a time grid off 300 points yields to unstable results for higher maturities and
16
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Table 3
Pricing and computational time, by Binomial Tree, for a Call option for some values of σ

and α, using T = 0.5, S0 = 100 and E = 110.
σ α Binomial tree (50 steps) Binomial tree (100 steps)

∆ MAPE (%) ∆ Time (s) ∆ MAPE (%) ∆ Time (s)

20%
1 95.1 0.0008 86.0 0.0032
1.45 3.2 0.0007 1.7 0.0038
1.9 0.3 0.0006 −1.0 0.0037

50%
1 6.5 0.0008 0.7 0.0031
1.45 −4.8 0.0007 −5.0 0.0036
1.9 −2.1 0.0005 −2.0 0.0036

90%
1 −6.5 0.0007 −6.8 0.0032
1.45 −7.6 0.0006 −7.7 0.0036
1.9 −3.6 0.0007 −3.8 0.0036

Table 4
Pricing and computational time, by Binomial Tree, for a Call option for some values of σ

and α, using T = 0.5, S0 = 100 and E = 110.
σ α Finite difference (2500×100) Finite difference (9000×200)

∆ MAPE (%) ∆ Time (s) ∆ MAPE (%) ∆ Time (s)

20%
1 2709376.4 0.0170 120044.6 0.1226
1.45 27.7 0.0168 3.0 0.1235
1.9 −1.3 0.0159 −0.9 0.1317

50%
1 61.0 0.0172 8.4 0.1220
1.45 3.5 0.0166 −5.1 0.1227
1.9 −6.0 0.0164 −2.1 0.1317

90%
1 7.6 0.0164 −7.2 0.1210
1.45 4.5 0.0159 −7.9 0.1222
1.9 −14.1 0.0163 −2.3 0.2173

Fig. 17. Pricing and running times for the Monte Carlo approach with T = 0.25, σ = 0.25, r = 0.05, S0 = 100 and E = 110.

volatilities, for σ = 20% and T = 0.25, the explicit scheme arrives at feasible results. Precisely, that lattice (300 × 100)
offers competitive results to the semiclassical method.

Summing up, as expected the better performance of the semiclassical approximation is achieved at both lower
maturities and volatilities.

6. Summary and further research

In this paper, a new numerical method for computing the CEV model was developed. In particular, this new approach
was based on the semiclassical approximation of Feynman’s path integral model. This formulation dealt with some of the
limitations of the conventional approach based on the non-central chi-squared distribution.

The experimental results showed a good fit between the newly proposed method and the traditional methodology
(setting the former as the benchmark), and also a lower computational cost, measured as the running time of each model.

We analyze several hypothetical scenarios, using different maturities, volatilities, and elasticities. In most cases, the
running time is one order of magnitude lower than the benchmark, but if the elasticity tends to one, this difference is
17
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Fig. 18. Pricing and running times for the binomial tree approach with T = 0.25, σ = 0.25, r = 0.05, S0 = 100 and E = 110.

Fig. 19. Pricing and running times for the finite difference approach with T = 0.25, σ = 0.25, r = 0.05, S0 = 100 and E = 110.

higher. As an accuracy measure, the absolute and relative errors are computed. For the range 10% < σ < 100% and
1.25 < α < 1.97 the relative error is below 20% in all the cases. Nevertheless, for short maturities and lower volatilities,
the error decreases considerably, coming to be less than 10% for small maturities (under 2% for T=0.25!) and for σ < 50.

The main remark is that this novel methodology allows the evaluation of a European contract under the CEV model
computing only an integral without any complex numerically method. The accuracy and efficiency of this method positions
it as a great competitor for the conventional methods based on the non-central chi-squared distribution, especially for
lower volatilities and maturities. It also offers advantages over other standard numerical methods (namely Monte Carlo,
binomial tree, and finite difference), with lower times of calculation considering similar levels of accuracy. Besides, it
offers an analytical form for the transition density function; capability not addressed by its competitors.

In terms of future research, a natural first extension of the paper is to adopt the proposed methodology to American
options. Also, the pricing of exotic options would be a good target. Another interesting research line is to apply the
semiclassical approximation of Feynman’s path integral model to more sophisticated stochastic volatility models such
as Heston, SABR or GARCH type models, where the traditional current solutions are much more complicated than that of
the CEV model, and hence the potential value-added of this methodology could be greater.
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